Loading…

Probabilistic forecasts of solar irradiance using stochastic differential equations

Probabilistic forecasts of renewable energy production provide users with valuable information about the uncertainty associated with the expected generation. Current state‐of‐the‐art forecasts for solar irradiance have focused on producing reliable point forecasts. The additional information include...

Full description

Saved in:
Bibliographic Details
Published in:Environmetrics (London, Ont.) Ont.), 2014-05, Vol.25 (3), p.152-164
Main Authors: Iversen, E. B., Morales, J. M., Møller, J. K., Madsen, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Probabilistic forecasts of renewable energy production provide users with valuable information about the uncertainty associated with the expected generation. Current state‐of‐the‐art forecasts for solar irradiance have focused on producing reliable point forecasts. The additional information included in probabilistic forecasts may be paramount for decision makers to efficiently make use of this uncertain and variable generation. In this paper, a stochastic differential equation framework for modeling the uncertainty associated with the solar irradiance point forecast is proposed. This modeling approach allows for characterizing both the interdependence structure of prediction errors of short‐term solar irradiance and their predictive distribution. Three different stochastic differential equation models are first fitted to a training data set and subsequently evaluated on a one‐year test set. The final model proposed is defined on a bounded and time‐varying state space with zero probability almost surely of events outside this space. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:1180-4009
1099-095X
DOI:10.1002/env.2267