Loading…

Bioinformatics approaches for improved recombinant protein production in Escherichia coli: protein solubility prediction

The solubility of recombinant protein expressed in Escherichia coli often represents the production yield. However, up-to-date, instances of successful production of soluble recombinant proteins in E. coli expression system with high yield remain scarce. This is mainly due to the difficulties in imp...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2014-11, Vol.15 (6), p.953-962
Main Authors: Chang, Catherine Ching Han, Song, Jiangning, Tey, Beng Ti, Ramanan, Ramakrishnan Nagasundara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The solubility of recombinant protein expressed in Escherichia coli often represents the production yield. However, up-to-date, instances of successful production of soluble recombinant proteins in E. coli expression system with high yield remain scarce. This is mainly due to the difficulties in improving the overall production capacity, as most of the well-established strategies usually involve a series of trial and error steps with unguaranteed success. One way to concurrently improve the production yield and minimize the production cost would be incorporating the potency of bioinformatics tools to conduct in silico studies, which forecasts the outcome before actual experimental work. In this article, we review and compare seven prediction tools available, which predict the solubility of protein expressed in E. coli, using the following criteria: prediction performance, usability, utility, prediction tool development and validation methodologies. This comprehensive review will be a valuable resource for researchers with limited prior experience in bioinformatics tools. As such, this will facilitate their choice of appropriate tools for studies related to enhancement of intracellular recombinant protein production in E. coli.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbt057