Loading…

Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase and human DNA polymerases alpha, beta, and gamma by the 5'-triphosphates of carbovir, 3'-azido-3'-deoxythymidine, 2',3'-dideoxyguanosine and 3'-deoxythymidine. A novel RNA template for the evaluation of antiretroviral drugs

Carbovir (the carbocyclic analog of 2'-3'-didehydro-2',3'-dideoxyguanosine) is a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication. Assays were developed to assess the mechanism of inhibition by the 5'-triphosphate of carbovir of HIV-1 reverse trans...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1991-01, Vol.266 (3), p.1754-1762
Main Authors: W B Parker, E L White, S C Shaddix, L J Ross, R W Buckheit, Jr, J M Germany, J A Secrist, 3rd, R Vince, W M Shannon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbovir (the carbocyclic analog of 2'-3'-didehydro-2',3'-dideoxyguanosine) is a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication. Assays were developed to assess the mechanism of inhibition by the 5'-triphosphate of carbovir of HIV-1 reverse transcriptase using either RNA or DNA templates that contain all four natural nucleotides. Carbovir-TP was a potent inhibitor of HIV-1 reverse transcriptase using either template with Ki values similar to that observed by AZT-TP, ddGTP, and ddTTP. The kinetic constants for incorporation of these nucleotide analogs into DNA by HIV-1 reverse transcriptase using either template were similar to the values seen for their respective natural nucleotides. In addition, the incorporation of either carbovir-TP or AZT-TP in the presence of dGTP or dTTP, respectively, indicated that the mechanism of inhibition by these two nucleotide analogs was due to their incorporation into the DNA resulting in chain termination. Carbovir-TP was not a potent inhibitor of DNA polymerase alpha, beta, or gamma, or DNA primase. Given the potent activity of carbovir-TP against HIV-1 reverse transcriptase and its lack of activity against human DNA polymerases, we believe that further evaluation of this compound as a potential drug for the treatment of HIV-1 infection is warranted.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)52360-7