Loading…

Modeling maximum lipid productivity of microalgae: Review and next step

Microalgae are fast growing organisms and have the ability to accumulate lipid, which can be converted to biofuels. Here, we review specific growth rate, population productivity, and lipid productivity based on 192 publications of the marine microalgae Nannochloropsis. Specific growth rate was repor...

Full description

Saved in:
Bibliographic Details
Published in:Renewable & sustainable energy reviews 2014-04, Vol.32, p.29-39
Main Authors: XU, Yaoyang, Boeing, Wiebke J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microalgae are fast growing organisms and have the ability to accumulate lipid, which can be converted to biofuels. Here, we review specific growth rate, population productivity, and lipid productivity based on 192 publications of the marine microalgae Nannochloropsis. Specific growth rate was reported by thirty publications often using exponential growth equations, and fourteen publications stated biomass productivity. However, direct comparison among productivity estimates is impossible due to differences in calculations or omission of equations. Less than 5% of the publications directly reported lipid productivity, the key parameter for biofuels. We extracted growth data from 30 publications using Plot Digitizer software and tested best fit with exponential and logistic equations. The logistic equation often represents growth data better than the exponential one. Furthermore, we argue that maximum sustainable yield (MSY) is a more useful measure for harvest rates than specific growth rates. Interestingly, MSY displayed closer linear relationships with carrying capacity measures (r2=0.780, p
ISSN:1364-0321
1879-0690
DOI:10.1016/j.rser.2014.01.002