Loading…

Optimizing the Chemical Compositions of Protective Agents for Freeze-drying Bifidobacterium longum BIOMA 5920

Freeze drying has a deleterious effect on the viability of microorganisms. In front of this difficulty, the present study adopts response surface methodology to optimize the chemical compositions of protective agents to seek for maximum viability of Bifidobacterium longum BIOMA 5920 during freeze-dr...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemical engineering 2012-10, Vol.20 (5), p.930-936
Main Author: 杨婵媛 朱晓丽 范代娣 米钰 骆艳娥 惠俊峰 苏然
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Freeze drying has a deleterious effect on the viability of microorganisms. In front of this difficulty, the present study adopts response surface methodology to optimize the chemical compositions of protective agents to seek for maximum viability of Bifidobacterium longum BIOMA 5920 during freeze-drying. Through the compara- tive analysis of single protectant, the complex protective agents show better effect on the Bifidobacterium viability. Human-like collagen (HLC), trehalose and glycerol are confirmed as significant factors by Box-Behnken Design. The optimized formula for these three variables is tested as follows: HLC 1.23%, trehalose 11.50% and glycerol 4.65%. Under this formula, the viability is 88.23%, 39.67% higher in comparison to the control. The viable count is 1.07×10 9 cfu·g-1 , greatly exceeding the minimum viable count requirement (10 6 cfu·g-1 ).
ISSN:1004-9541
2210-321X
DOI:10.1016/S1004-9541(12)60420-0