Loading…

Application of cellular biosensors for analysis of bioactivity associated with airborne particulate matter

► Usage of cellular biosensors for testing of airborne PM in vitro. ► Significant differences between toxic bioactivity of PM from different industrial sites. ► Positive correlation of biosensors and chemical analysis based rankings of PM toxicity risk. Exposure to airborne particulate matter (PM) i...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology in vitro 2011-08, Vol.25 (5), p.1132-1142
Main Authors: Wagner, Waldemar, Sachrajda, Iwona, Pułaski, Łukasz, Hałatek, Tadeusz, Dastych, Jarosław
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► Usage of cellular biosensors for testing of airborne PM in vitro. ► Significant differences between toxic bioactivity of PM from different industrial sites. ► Positive correlation of biosensors and chemical analysis based rankings of PM toxicity risk. Exposure to airborne particulate matter (PM) is a known risk factor for adverse health effects observed in many environmental and occupational settings. The pathological mechanisms involved in PM-mediated toxicity depend on the size and contents of particles that vary depending on the source of emission. Chemical compositions of PM show multiple components with different bioavailabilities that are capable of acting on multiple molecular and cellular targets, making it difficult to predict PM-associated toxicity based solely on chemical analysis. The aim of the study was to develop robust, sensitive and economical assays for environmental pollutants based on genetically modified mammalian cells. We tested the suitability of two biosensor assays, Fluorescent Cell Chip and Oxibios, developed in part in our laboratories, for assessment of the potential toxicity of airborne PM. Reference PM and PM obtained by sampling of diesel exhaust and indoor air in aluminum and copper facilities in Poland were tested with the two bioassays using unified experimental protocols. Resultant data showed complex patterns of stimulatory and inhibitory activities that were consistent with the origin of PM and might be correlated with their chemical composition. The analysis was informative with regard to type and extent of possible toxicity associated with specific PM and allowed for detection of significant differences between PM from different industrial sites and particular locations within the same industrial sites as well as overall ranking of toxicity risk based on chemical analysis.
ISSN:0887-2333
1879-3177
DOI:10.1016/j.tiv.2011.03.019