Loading…

Simulation of Changes in Myocardial Tissue Properties During Left Ventricular Assistance With a Rotary Blood Pump

We considered a mathematical model to investigate changes in geometric and hemodynamic indices of left ventricular function in response to changes in myofiber contractility and myocardial tissue stiffness during rotary blood pump support. Left ventricular assistance with a rotary blood pump was simu...

Full description

Saved in:
Bibliographic Details
Published in:Artificial organs 2013-06, Vol.37 (6), p.531-540
Main Authors: Martina, Jerson R., Bovendeerd, Peter H.M., de Jonge, Nicolaas, de Mol, Bas A.J.M., Lahpor, Jaap R., Rutten, Marcel C.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We considered a mathematical model to investigate changes in geometric and hemodynamic indices of left ventricular function in response to changes in myofiber contractility and myocardial tissue stiffness during rotary blood pump support. Left ventricular assistance with a rotary blood pump was simulated based on a previously published biventricular model of the assisted heart and circulation. The ventricles in this model were based on the one‐fiber model that relates ventricular function to myofiber contractility and myocardial tissue stiffness. The simulations showed that indices of ventricular geometry, left ventricular shortening fraction, and ejection fraction had the same response to variations in myofiber contractility and myocardial tissue stiffness. Hemodynamic measures showed an inverse relation compared with geometric measures. Particularly, pulse pressure and arterial dP/dtmax increased when myofiber contractility increased, whereas increasing myocardial tissue stiffness decreased these measures. Similarly, the lowest pump speed at which the aortic valve remained closed increased when myofiber contractility increased and decreased when myocardial tissue stiffness increased. Therefore, simultaneous monitoring of hemodynamic parameters and ventricular geometry indirectly reflects the status of the myocardial tissue. The appropriateness of this strategy will be evaluated in the future, based on in vivo studies.
ISSN:0160-564X
1525-1594
DOI:10.1111/j.1525-1594.2012.01548.x