Loading…

Heterogeneity in binary mixtures of dimethyl sulfoxide and glycerol: fluorescence correlation spectroscopy

Diffusion of four coumarin dyes in a binary mixture of dimethyl sulfoxide (DMSO) and glycerol is studied using fluorescence correlation spectroscopy (FCS). The coumarin dyes are C151, C152, C480, and C481. In pure DMSO, all the four dyes exhibit a very narrow (almost uni-modal) distribution of diffu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2013-06, Vol.138 (21), p.214507-214507
Main Authors: Chattoraj, Shyamtanu, Chowdhury, Rajdeep, Ghosh, Shirsendu, Bhattacharyya, Kankan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diffusion of four coumarin dyes in a binary mixture of dimethyl sulfoxide (DMSO) and glycerol is studied using fluorescence correlation spectroscopy (FCS). The coumarin dyes are C151, C152, C480, and C481. In pure DMSO, all the four dyes exhibit a very narrow (almost uni-modal) distribution of diffusion coefficient (Dt). In contrast, in the binary mixtures all of them display a bimodal distribution of Dt with broadly two components. One of the components of D(t) corresponds to the bulk viscosity. The other one is similar to that in pure DMSO. This clearly indicates the presence of two distinctly different nano-domains inside the binary mixture. In the first, the micro-environment of the solute consists of both DMSO and glycerol approximately at the bulk composition. The other corresponds to a situation where the first layer of the solute consists of DMSO only. The burst integrated fluorescence lifetime (BIFL) analysis also indicates presence of two micro-environments one of which resembles DMSO. The relative contribution of the DMSO-like environment obtained from the BIFL analysis is much larger than that obtained from FCS measurements. It is proposed that BIFL corresponds to an instantaneous environment in a small region (a few nm) around the probe. FCS, on the contrary, describes the long time trajectory of the probes in a region of dimension ~200 nm. The results are explained in terms of the theory of binary mixtures and recent simulations of binary mixtures containing DMSO.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4808217