Loading…

Self-assembled nanoparticle arrays for multiphase trace analyte detection

Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2013-02, Vol.12 (2), p.165-171
Main Authors: Cecchini, Michael P, Turek, Vladimir A, Paget, Jack, Kornyshev, Alexei A, Edel, Joshua B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or liquid/air interfaces. The density of the arrays can be controlled by modifying the nanoparticle functionality, pH of the solution and salt concentration. Importantly, these arrays are robust, self-healing, reproducible and extremely easy to handle. Here, we report on the use of such platforms formed by Au nanoparticles for the detection of multi-analytes from the aqueous, organic or air phases. The interfacial area of the Au array in our system is ≈25 mm(2) and can be made smaller, making this platform ideal for small-volume samples, low concentrations and trace analytes. Importantly, the ease of assembly and rapid detection make this platform ideal for in-the-field sample testing of toxins, explosives, narcotics or other hazardous chemicals.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat3488