Loading…

Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3)

One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions a...

Full description

Saved in:
Bibliographic Details
Published in:Tellus. Series A, Dynamic meteorology and oceanography Dynamic meteorology and oceanography, 2011-10, Vol.63 (5), p.884-892
Main Authors: Li, Fuyu, Collins, William D., Wehner, Michael F., Williamson, David L., Olson, Jerry G., Algieri, Christopher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.
ISSN:0280-6495
1600-0870
1600-0870
DOI:10.1111/j.1600-0870.2011.00544.x