Loading…

A Hetero Diels–Alder Approach to the Synthesis of Chromans (3,4-Dihydrobenzopyrans) Using Oxonium Ion Chemistry: The Oxa-Povarov Reaction

An oxa analogue of the well-known Povarov reaction has been developed for the synthesis of 3,4-dihydrobenzopyrans (chromans). The reaction involves the formal inverse electron demand [4 + 2] cycloaddition reaction of in situ-generated cationic aryl 2-oxadiene oxocarbenium ions with alkenes. The oxon...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2013-02, Vol.78 (4), p.1404-1420
Main Authors: Taylor, Rivka R. R, Batey, Robert A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An oxa analogue of the well-known Povarov reaction has been developed for the synthesis of 3,4-dihydrobenzopyrans (chromans). The reaction involves the formal inverse electron demand [4 + 2] cycloaddition reaction of in situ-generated cationic aryl 2-oxadiene oxocarbenium ions with alkenes. The oxonium ion intermediates are generated through Lewis acid (SnCl4)-promoted reactions of phenol-derived Rychnovsky-type mixed acetals. The yield and diastereoselectivity of the chroman products are found to depend upon the substitution pattern of the precursor alkene (i.e., monosubstituted, trans- or cis-disubstituted and cyclic alkenes). Generally, the reactions afford the endo-diastereomers as the major products, except for the reactions of trans-β-methylstyrene, which afford exo-chromans. A comparison of the product distributions from the reactions of trans- and cis-β-methylstyrene reveal that the reaction proceeds, at least in part, by a nonconcerted ionic pathway. Just as for the aza-Povarov reaction, there are two potential mechanisms for the reaction. The first mechanism involves a direct asynchronous [4 + 2] cycloaddition pathway, while the second occurs through the stepwise Prins addition of the alkene to the aryl 2-oxadiene oxonium ion, followed by an intramolecular aromatic substitution reaction of the resultant cation (i.e., a domino Prins/intramolecular Friedel–Crafts reaction).
ISSN:0022-3263
1520-6904
DOI:10.1021/jo302328s