Loading…

Mechanical properties of nano/micro multilayered thermoplastic composites based on PP matrix

We have shown in an earlier work that the addition of both organomodified layered silicates and micrometric calcium carbonate (CaCO3) into a polypropylene (PP) matrix resulted in improved mechanical properties due to synergistic effect of the fillers. In this study, we analyzed the feasibility of pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermoplastic composite materials 2012-11, Vol.25 (7), p.835-849
Main Authors: Aurilia, M., Sorrentino, L., Berardini, F., Sawalha, S., Iannace, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have shown in an earlier work that the addition of both organomodified layered silicates and micrometric calcium carbonate (CaCO3) into a polypropylene (PP) matrix resulted in improved mechanical properties due to synergistic effect of the fillers. In this study, we analyzed the feasibility of producing continuous glass fibers composites with micro/nanoreinforced matrix. In particular, either highly filled matrices with micrometric CaCO3 (22, 40, and 50 wt %) or micro/nanoreinforced matrix were used to prepare composites in order to investigate the effect of fillers on both mechanical and thermomechanical properties. The best mechanical performances were obtained when nano- and microsized particles were combined to reinforce the thermoplastic matrices employed in the film stacking manufacturing method. In such systems, the micro/nanocomposites have improved the flexural properties of the continuous fiber laminate, producing an increase of both flexural modulus (60%) and flexural strength (130%). Moreover, storage modulus of glass fibers composite prepared with micro/nanoreinforced matrix was higher than modulus of the composites manufactured with either neat PP matrix or microreinforced matrix in −40/150°C temperature range.
ISSN:0892-7057
1530-7980
DOI:10.1177/0892705711414094