The Kinetics and Folding Pathways of Intramolecular G‑Quadruplex Nucleic Acids

The folding kinetics of G-quadruplex forming sequences is critical to their capacity to influence biological function. While G-quadruplex structure and stability have been relatively well studied, little is known about the kinetics of their folding. We employed a stopped-flow mixing technique to sys...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2012-11, Vol.134 (46), p.19297-19308
Main Authors: Zhang, Amy Y. Q, Balasubramanian, Shankar
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The folding kinetics of G-quadruplex forming sequences is critical to their capacity to influence biological function. While G-quadruplex structure and stability have been relatively well studied, little is known about the kinetics of their folding. We employed a stopped-flow mixing technique to systematically investigate the potassium-dependent folding kinetics of telomeric RNA and DNA G-quadruplexes and RNA G-quadruplexes containing only two G-quartets formed from sequences r[(GGA)3GG] and r[(GGUUA)3GG]. Our findings suggest a folding mechanism that involves two kinetic steps with initial binding of a single K+, irrespective of the number of G-quartets involved or whether the G-quadruplex is formed from RNA or DNA. The folding rates for telomeric RNA and DNA G-quadruplexes are comparable at near physiological [K+] (90 mM) (τ = ∼60 ms). The folding of a 2-quartet RNA G-quadruplex with single nucleotide A loops is considerably slower (τ = ∼700 ms), and we found that the time required to fold a UUA looped variant (τ > 100 s, 500 mM K+) exceeds the lifetimes of some regulatory RNAs. We discuss the implications of these findings with respect to the fundamental properties of G-quadruplexes and their potential functions in biology.
ISSN:0002-7863
1520-5126