Loading…

β-Adrenergic regulation of Na+ uptake by larval zebrafish Danio rerio in acidic and ion-poor environments

The potential role of adrenergic systems in regulating Na(+) uptake in zebrafish (Danio rerio) larvae was investigated. Treatment with isoproterenol (a generic β-adrenergic receptor agonist) stimulated Na(+) uptake, whereas treatment with phenylephrine (an α(1)-adrenergic receptor agonist) as well a...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2012-11, Vol.303 (10), p.R1031-R1041
Main Authors: Kumai, Yusuke, Ward, Mellissa A R, Perry, Steve F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The potential role of adrenergic systems in regulating Na(+) uptake in zebrafish (Danio rerio) larvae was investigated. Treatment with isoproterenol (a generic β-adrenergic receptor agonist) stimulated Na(+) uptake, whereas treatment with phenylephrine (an α(1)-adrenergic receptor agonist) as well as clonidine (an α(2)-adrenergic receptor agonist) significantly reduced Na(+) uptake, suggesting opposing roles of α- and β-adrenergic receptors in Na(+) uptake regulation. The increase in Na(+) uptake associated with exposure to acidic water (pH = 4.0) was attenuated in the presence of the nonselective β-receptor antagonist propranolol or the β(1)-receptor blocker atenolol; the β(2)-receptor antagonist ICI-118551 was without effect. The stimulation of Na(+) uptake associated with ion-poor water (32-fold dilution of Ottawa tapwater) was unaffected by β-receptor blockade. Translational gene knockdown of β-receptors using antisense oligonucleotide morpholinos was used as a second method to assess the role of adrenergic systems in the regulation of Na(+) uptake. Whereas β(1)- or β(2B)-receptor knockdown led to significant decreases in Na(+) uptake during exposure to acidic water, only β(2A)-receptor morphants failed to increase Na(+) uptake in response to ion-poor water. In support of the pharmacology and knockdown experiments that demonstrated an involvement of β-adrenergic systems in the control of Na(+) uptake, we showed that the H(+)-ATPase-rich (HR) cell, a subtype of ionocyte known to be a site of Na(+) uptake, is innervated and appears to express β-adrenergic receptors (propranolol binding sites) at 4 days postfertilization. These data indicate an important role of adrenergic systems in regulating Na(+) uptake in developing zebrafish.
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00307.2012