Loading…

Importance of Hierarchical Structures in Wetting Stability on Submersed Superhydrophobic Surfaces

Submersed superhydrophobic surfaces exhibit great potential for reducing flow resistance in microchannels and drag of submersed bodies. However, the low stability of liquid–air interfaces on those surfaces limits the scope of their application, especially under high liquid pressure. In this paper, w...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2012-06, Vol.28 (25), p.9440-9450
Main Authors: Xue, Yahui, Chu, Shigan, Lv, Pengyu, Duan, Huiling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Submersed superhydrophobic surfaces exhibit great potential for reducing flow resistance in microchannels and drag of submersed bodies. However, the low stability of liquid–air interfaces on those surfaces limits the scope of their application, especially under high liquid pressure. In this paper, we first investigate the wetting states on submersed hydrophobic surfaces with one-level structure under hydrostatic pressure. Different equilibrium states based on free-energy minimization are formulated, and their stabilities are analyzed as well. Then, by comparison with the existing numerical and experimental studies, we confirm that a new metastable state, which happens after depinning of the three-phase contact line (TCL), exists. Finally, we show that a strategy of using hierarchical structures can strengthen the TCL pinning of the liquid–air interface in the metastable state. Therefore, the hierarchical structure on submersed surfaces is important to further improve the stability of superhydrophobicity under high liquid pressure.
ISSN:0743-7463
1520-5827
DOI:10.1021/la300331e