Loading…

Toll-Like Receptor 7 Preconditioning Induces Robust Neuroprotection Against Stroke by a Novel Type I Interferon-Mediated Mechanism

Systemic administration of Toll-like receptor (TLR) 4 and TLR9 agonists before cerebral ischemia have been shown to reduce ischemic injury by reprogramming the response of the brain to stroke. Our goal was to explore the mechanism of TLR-induced neuroprotection by determining whether a TLR7 agonist...

Full description

Saved in:
Bibliographic Details
Published in:Stroke (1970) 2012-05, Vol.43 (5), p.1383-1389
Main Authors: LEUNG, Philberta Y, STEVENS, Susan L, PACKARD, Amy E. B, LESSOV, Nikola S, TAO YANG, CONRAD, Valerie K, DEN DUNGEN, Noortje N. A. M. Van, SIMON, Roger P, STENZEL-POORE, Mary P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Systemic administration of Toll-like receptor (TLR) 4 and TLR9 agonists before cerebral ischemia have been shown to reduce ischemic injury by reprogramming the response of the brain to stroke. Our goal was to explore the mechanism of TLR-induced neuroprotection by determining whether a TLR7 agonist also protects against stroke injury. C57Bl/6, TNF(-/-), interferon (IFN) regulatory factor 7(-/-), or type I IFN receptor (IFNAR)(-/-) mice were subcutaneously administered the TLR7 agonist Gardiquimod (GDQ) 72 hours before middle cerebral artery occlusion. Infarct volume and functional outcome were determined after reperfusion. Plasma cytokine responses and induction of mRNA for IFN-related genes in the brain were measured. IFNAR(-/-) mice also were treated with the TLR4 agonist (lipopolysaccharide) or the TLR9 agonist before middle cerebral artery occlusion and infarct volumes measured. The results show that GDQ reduces infarct volume as well as functional deficits in mice. GDQ pretreatment provided robust neuroprotection in TNF(-/-) mice, indicating that TNF was not essential. GDQ induced a significant increase in plasma IFNα levels and both IRF7(-/-) and IFNAR(-/-) mice failed to be protected, implicating a role for IFN signaling in TLR7-mediated protection. Our studies provide the first evidence that TLR7 preconditioning can mediate neuroprotection against ischemic injury. Moreover, we show that the mechanism of protection is unique from other TLR preconditioning ligands in that it is independent of TNF and dependent on IFNAR.
ISSN:0039-2499
1524-4628
DOI:10.1161/strokeaha.111.641522