Loading…

Design and characterization of finite-length fiber gratings

A rigorous analysis of the response of fiber Bragg gratings of finite length is presented. For the discrete grating model, we find necessary and sufficient conditions for the response to be realizable as a grating of finite length. These conditions are used to develop a general method for designing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 2003-10, Vol.39 (10), p.1238-1245
Main Authors: Skaar, J., Waagaard, O.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A rigorous analysis of the response of fiber Bragg gratings of finite length is presented. For the discrete grating model, we find necessary and sufficient conditions for the response to be realizable as a grating of finite length. These conditions are used to develop a general method for designing gratings with a prescribed length. The design process is divided into two parts. First, we find a realizable reflection spectrum which approximates the target spectrum. Once the spectrum is found, one can determine the associated grating profile by straightforward layer-peeling inverse-scattering or transfer matrix factorization methods. As an example, a dispersionless bandpass filter is designed and compared to the results when the layer-peeling algorithm is applied directly to a windowed impulse response. We also discuss potential applications to grating characterization including regularization and finding the absolute reflection spectrum from a measured, normalized version.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2003.817581