Loading…

Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces

A semiempirical polarimetric backscattering model for bare soil surfaces is inverted directly to retrieve both the volumetric soil moisture content M/sub v/ and the rms surface height s from multipolarized radar observations. The rms surface height s and the moisture content M/sub v/ can be read fro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2004-03, Vol.42 (3), p.596-601
Main Author: OH, Yisok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A semiempirical polarimetric backscattering model for bare soil surfaces is inverted directly to retrieve both the volumetric soil moisture content M/sub v/ and the rms surface height s from multipolarized radar observations. The rms surface height s and the moisture content M/sub v/ can be read from inversion diagrams using the measurements of the cross-polarized backscattering coefficient /spl sigma//sub vh//sup 0/ and the copolarized ratio p(=/spl sigma//sub hh//sup 0///spl sigma//sub vv//sup 0/). Otherwise, the surface parameters can be estimated simply by solving two equations (/spl sigma//sub vh//sup 0/ and p) in two unknowns (M/sub v/ and s). The inversion technique has been applied to the polarimetric backscattering coefficients measured by ground-based polarimetric scatterometers and the Jet Propulsion Laboratory airborne synthetic aperture radar. A good agreement was observed between the values of surface parameters (the rms height s, roughness parameter ks, and the volumetric soil moisture content M/sub v/) estimated by the inversion technique and those measured in situ.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2003.821065