Loading…

Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species

We applied a fractal root model to the 3D architecture of the coarse root systems of Betula pendula Roth, Picea abies (L.) H. Karst., and Pinus sylvestris L. in mixed boreal forests. Our dataset consisted of 60 root systems excavated in five different mixed forest stands. We analyzed the variability...

Full description

Saved in:
Bibliographic Details
Published in:Trees (Berlin, West) West), 2010-04, Vol.24 (2), p.219-236
Main Authors: Kalliokoski, Tuomo, Sievänen, Risto, Nygren, Pekka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We applied a fractal root model to the 3D architecture of the coarse root systems of Betula pendula Roth, Picea abies (L.) H. Karst., and Pinus sylvestris L. in mixed boreal forests. Our dataset consisted of 60 root systems excavated in five different mixed forest stands. We analyzed the variability of the model parameters with respect to species, site type, and different root axes. According to our results, the cross-sectional area of root segments (i.e. second power of diameter) was a suitable variable for analyzing the values of parameters of the fractal model. The parameter values varied with generation and order of root segments; the roots thus did not follow the simple fractal branching. The variation of parameters along the root axes showed the existence of a zone of rapid tapering in all tree species. The model was, with parameter values analyzed from the data, moderately capable of accounting for the main coarse root characteristics. It was important for model predictions to take into account the tapering of root segments. We conclude that, in boreal forests, tree root systems are the output of the axis-specific morphogenetic branching rules and functional adaptation to spatial heterogeneity in the soil.
ISSN:0931-1890
1432-2285
DOI:10.1007/s00468-009-0393-1