Loading…

An Empirical Large-Signal Model for SiC MESFETs With Self-Heating Thermal Model

An empirical large-signal model for high-power microwave silicon-carbide MESFETs capable of predicting self-heating thermal behavior is presented. A generalized drain-current equation based on pulsed-gate IV characteristics measuring up to 2 A and 58 V is presented along with its dependence on tempe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2008-11, Vol.56 (11), p.2671-2680
Main Authors: Yuk, K.S., Branner, G.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An empirical large-signal model for high-power microwave silicon-carbide MESFETs capable of predicting self-heating thermal behavior is presented. A generalized drain-current equation based on pulsed-gate IV characteristics measuring up to 2 A and 58 V is presented along with its dependence on temperature. A thermal subcircuit with a nonlinear thermal resistance characterized by a dc method is used to model the temperature behavior of the device. The effect of substrate trapping is modeled as a gate-source voltage correction. The complete drain-current model accurately predicts pulsed-gate and pulsed-gate-and-drain IV characteristics for various quiescent biases, as well as static IV characteristics. The complete large-signal model is shown to accurately predict S -parameters, large-signal output, and input reflected power across biases and frequencies, and third-order intermodulation products.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2008.2005922