Loading…

Capabilities and limitations of the simplified smoothed particle hydrodynamics explosive welding model

The process of explosive welding offers very attractive capabilities of joining dissimilar materials, but at the same time, it is a highly intricate and advanced technology involving a multitude of phenomena occurring in the colliding plates in a matter of microseconds. In this case, numerical model...

Full description

Saved in:
Bibliographic Details
Published in:Archives of Civil and Mechanical Engineering 2024-01, Vol.24 (1), p.37, Article 37
Main Authors: Mojżeszko, Mateusz, Madej, Łukasz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The process of explosive welding offers very attractive capabilities of joining dissimilar materials, but at the same time, it is a highly intricate and advanced technology involving a multitude of phenomena occurring in the colliding plates in a matter of microseconds. In this case, numerical modeling can greatly support understanding local material behavior and eventually designing the welding technology for the particular investigated metals. Therefore, this work aims to create a robust numerical model that will reflect the main mechanisms controlling the explosive welding process, consider the properties of the bonded materials, and provide results in a short time. To reflect the complexity of this process, the meshless calculation method SPH (smooth particle hydrodynamics) was used. However, before the computer-aided technology design stage, the explosive welding model has to be thoroughly investigated to eliminate any unphysical artifact that can affect the interpretation of the final results. Therefore, in the current research, the simplified model was proposed to confirm the method's robustness and show its capabilities along with the limitations in capturing the required physics. The key aspects of the model, e.g., the role of computational domain discretization, capabilities to reflect the influence of collision angle on material behavior or local temperature increase leading to melting, were investigated. With this work, we have clearly demonstrated the high capabilities of the SPH method in simulation explosive welding complexity even with the simplified 2D model. At the same time, the importance of particular model development stages was highlighted to provide clear guidelines for researchers working in this field.
ISSN:1644-9665
2083-3318
1644-9665
DOI:10.1007/s43452-023-00851-z