Loading…

Combined experimental–numerical mode I fracture characterization of the pultruded composite bars

In this paper, pultruded GFRP bars are investigated to determine their fracture properties. The double cantilever beam test (DCB) is used to assess fracture behavior under mode I loading conditions. However, due to the presence of the R-curve effect (variable fracture energy dependent on the length...

Full description

Saved in:
Bibliographic Details
Published in:Archives of Civil and Mechanical Engineering 2023-05, Vol.23 (3), p.146, Article 146
Main Authors: Smolnicki, Michał, Duda, Szymon, Zielonka, Paweł, Stabla, Paweł, Lesiuk, Grzegorz, Lopes, Cristiane Caroline Campos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, pultruded GFRP bars are investigated to determine their fracture properties. The double cantilever beam test (DCB) is used to assess fracture behavior under mode I loading conditions. However, due to the presence of the R-curve effect (variable fracture energy dependent on the length of the crack), it is necessary to introduce a nonstandard approach to determine fracture properties. The mixed experimental–numerical approach is proposed to deal with this issue. Numerical simulations were carried out in Simulia Abaqus, and with Python scripting it was possible to generate models and obtain R-curve for the material. The numerical model built based on the experimental results has very good agreement with it (force–displacement and delamination length–time characteristics) which allows the use of the mentioned model in the analysis of more complex structures. Acoustic emission analysis was introduced as an auxiliary technique. The delamination obtained from both the numerical model and the experiment complies with the registered acoustic emission events. The proposed method can be used in preparing a material model for other composite materials, which display the presence of the R-curve effect.
ISSN:2083-3318
1644-9665
2083-3318
DOI:10.1007/s43452-023-00684-w