Loading…

Synergistic effect of novel ionic liquid/graphene complex on the flame retardancy of epoxy nanocomposites

Epoxy resin (EP) is a thermosetting resin with excellent properties, but its application is limited due to its high brittleness and poor flame retardancy. Therefore, to solve this problem, a dispersion system of imidazole-containing ionic liquid ([Dmim]Es) and graphene in epoxy resin is designed bas...

Full description

Saved in:
Bibliographic Details
Published in:Carbon Letters 2023-03, Vol.33 (2), p.501-516
Main Authors: Zhang, Chunhong, Xu, Zice, Sui, Wenbo, Zang, Junbo, Ao, Yuhui, Wang, Lu, Shang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epoxy resin (EP) is a thermosetting resin with excellent properties, but its application is limited due to its high brittleness and poor flame retardancy. Therefore, to solve this problem, a dispersion system of imidazole-containing ionic liquid ([Dmim]Es) and graphene in epoxy resin is designed based on the π–π stacking effect between imidazole and graphite layers. The study on the thermal and flame-retardant properties of the composites show that the modified [Dmim]Es–graphene nanosheets improved the flame retardancy, smoke suppression and thermal stability of epoxy resin. With the addition of 5wt% [Dmim]Es and 1% Gra, the exothermic rate (HRR) and total exothermic (THR) of the composites decrease by 35% and 30.2% compared with the untreated epoxy cross-linking, respectively. The limiting oxygen index reaches 33.4%, the UL-94 test rating reaches V-0. The characterization of mechanical properties shows that the tensile properties and impact properties increased by 13% and 30%, respectively. Through SEM observation, the addition of [Dmim]Es improves the dispersion of graphene in the EP collective and changes the mechanical fracture behavior. The results show that ionic liquid [Dmim]Es-modified graphene nanosheets are well dispersed in the matrix, which not only improves the mechanical properties of epoxy resin (EP), but also has a synergistic effect on flame retardancy. This work provides novel flame-retardant and graphene dispersion methods that broaden the range of applications of epoxy resins.
ISSN:1976-4251
2233-4998
DOI:10.1007/s42823-022-00440-9