Loading…

Inconsistent Surface Registration via Optimization of Mapping Distortions

We address the problem of registering two surfaces, of which a natural bijection between them does not exist. More precisely, only a partial subset of the source surface is assumed to be in correspondence with a subset of the target surface. We call such a problem an inconsistent surface registratio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2020-06, Vol.83 (3), p.64, Article 64
Main Authors: Qiu, Di, Lui, Lok Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We address the problem of registering two surfaces, of which a natural bijection between them does not exist. More precisely, only a partial subset of the source surface is assumed to be in correspondence with a subset of the target surface. We call such a problem an inconsistent surface registration (ISR) problem. This problem is challenging as the corresponding regions on each surface and a meaningful bijection between them have to be simultaneously determined. In this paper, we propose a variational model to solve the ISR problem by minimizing mapping distortions. Mapping distortions are described by the Beltrami coefficient as well as the differential of the mapping. Registration is then guided by feature landmarks and/or intensities, such as curvatures, defined on each surface. The key idea of the approach is to control angle and scale distortions via quasiconformal theory as well as minimizing landmark and/or intensity mismatch. A splitting method is proposed to iteratively search for the optimal corresponding regions as well as the optimal bijection between them. Bijectivity of the mapping is easily enforced by a thresholding of the Beltrami coefficient. We test the proposed method on both synthetic and real examples. Experimental results demonstrate the efficacy of our proposed model.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-020-01246-5