Loading…

Voltammetric Determination of Acrylamide Using Coal Tar Pitch Modified Pencil Graphite Electrode by SWV

The adverse effects of acrylamide (AA) on humans are becoming clear, especially after a series of related investigations reported the dependence on consuming foods prepared by exposure to high temperatures for a long-time and cancer risk. Accurate determination of AA in food samples at trace amount...

Full description

Saved in:
Bibliographic Details
Published in:Food analytical methods 2023-12, Vol.16 (11-12), p.1738-1745
Main Authors: Korkmaz, Şeyma, Bosnali, Wael, Mülazımoğlu, İbrahim Ender, Mülazımoğlu, Ayşen Demir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adverse effects of acrylamide (AA) on humans are becoming clear, especially after a series of related investigations reported the dependence on consuming foods prepared by exposure to high temperatures for a long-time and cancer risk. Accurate determination of AA in food samples at trace amount is considered the first step to overcome this significant problem. The determination of AA using coal tar pitch modified pencil graphite (PGE/CTP) electrode was reported. The bare PGE and PGE/CTP electrodes were characterized using microscopic imaging technique scanning electron microscopy (SEM). The electrochemical behavior of AA was studied on PGE/CTP electrode in different medium acidities (pH) of phosphate and Briton-Robinson (BR) buffer solutions by employing square wave voltammetry (SWV). Linear sweep voltammetry (LSV) technique was applied to determine the mass transfer mode of AA from bulk solution to the PGE/CTP electrode surface. The optimum conditions were using phosphate buffer solution (PBS) at pH 7.0. The detectability of AA on the surfaces of bare PGE and PGE/CTP electrodes was compared, and the suitability of PGE/CTP electrode usage was determined. The linear relationship between peak current and AA concentration was in the range of 1000.0 to 0.5 nM. The limit of detection of AA was 0.2094 nM, and the limit of quantitation was 0.6912 nM. In addition, the PGE/CTP electrode as a sensor was successfully used for the determination of AA in the instant coffee sample.
ISSN:1936-9751
1936-976X
DOI:10.1007/s12161-023-02540-2