Loading…

Extending conducting channels in Fe-N-C by interfacial growth of CNTs with minimal metal loss for efficient ORR electrocatalysis

Achieving a high electrocatalytic performance using a completely metal-free electrocatalyst, preferably based on only carbonaceous materials, remains a challenge. Alternatively, an efficient composite of a carbon nanostructure and a non-noble metal with minimum dependence on a metal holds immense po...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-10, Vol.15 (38), p.1559-15599
Main Authors: Garg, Reeya, Jaiswal, Mohit, Kumar, Kaustubh, Kaur, Komalpreet, Rawat, Bhawna, Kailasam, Kamalakannan, Gautam, Ujjal K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Achieving a high electrocatalytic performance using a completely metal-free electrocatalyst, preferably based on only carbonaceous materials, remains a challenge. Alternatively, an efficient composite of a carbon nanostructure and a non-noble metal with minimum dependence on a metal holds immense potential. Although single-atom catalysis brings superior performance, its complex synthetic strategy limits its large-scale implementation. Previous investigation has shown that atomic dispersion (Fe-N x -C) is accompanied by higher metal-loss compared to nanoparticle formation (Fe-NPs-N-C). Therefore, to achieve minimum metal loss, we first incorporated iron nanoparticles (Fe NPs) to N-doped carbon (N-C) and then exposed them to a cheap carbon source, melamine at high temperature, resulting in the growth of carbon nanotubes (CNTs) catalysed by those Fe NPs loaded on N-C (Fe-NPs-N-C). Thermogravimetric analysis showed that the metal-retention in the composite is higher than that in the bare carbon nanotube and even the atomically dispersed Fe-active sites on N-C. The composite material (Fe-NPs-N-C/CNT) shows a high half-wave potential (0.89 V vs. RHE) which is superior to that of commercial Pt/C towards the oxygen reduction reaction (ORR). The enhanced activity is attributed to the synergistic effect of high conductivity of CNTs and active Fe-sites as the composite exceeds the individual electrocatalytic performance shown by Fe-CNTs & Fe-NPs-N-C, and even that of atomically dispersed Fe-active sites on N-C. In situ growth of CNTs was catalyzed by iron nanoparticles embedded on nitrogen doped carbon nanosheets, leading to efficient electrocatalysis with prohibited mass-loss during synthesis of a catalyst material.
ISSN:2040-3364
2040-3372
DOI:10.1039/d3nr02706f