Loading…

Enhanced elasticity in magnesium nanoparticle reinforced acrylic elastomer

Elastomers are highly potential materials for shock absorption, cushioning, and similar applications. However, for most elastomers, poor strength limits their application. Compounding nanoparticles in the polymer matrix have been vastly explored to improve mechanical strength or introduce electrical...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2023-10, Vol.63 (10), p.3223-3230
Main Authors: Saedi, Soheil, Blissett, Stephen, Raji, Hatim, Hesabizadeh, Tina, Osterlin, Ben, Guisbiers, Gregory
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elastomers are highly potential materials for shock absorption, cushioning, and similar applications. However, for most elastomers, poor strength limits their application. Compounding nanoparticles in the polymer matrix have been vastly explored to improve mechanical strength or introduce electrical, thermal, optical, and magnetic properties to the polymer. However, poor dispersion of nanoparticles in polymer mixture has remained a challenge in nanocomposite production. This study presents a unique approach to improving particle dispersion as well as designing ultra-soft, light, cost-effective, and highly compressible nanocomposite elastomers. To this end, magnesium nanoparticles were fabricated by pulsed laser ablation in a non-ionic surfactant (Triton X-100) and the mixture was added to an acrylic base polymer chain to design the nanocomposite elastomer. Various nanocomposites were manufactured using different ratios of surfactant and nanoparticle mixtures. The mechanical and optical properties of the composites were investigated. The nanocomposite containing the largest amount of Triton X-100 and magnesium nanoparticles displayed beyond 50% compressive deformation under only 0.4 MPa load and light absorbance was enhanced in the UV-visible region of the spectra.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.26438