Loading…

Design Principles for Maximizing Hole Utilization of Semiconductor Quantum Wires toward Efficient Photocatalysis

Maximizing hole‐transfer kinetics—usually a rate‐determining step in semiconductor‐based artificial photosynthesis—is pivotal for simultaneously enabling high‐efficiency solar hydrogen production and hole utilization. However, this remains elusive yet as efforts are largely focused on optimizing the...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2023-08, Vol.135 (33), p.n/a
Main Authors: Zhang, Chong, Shao, Zhen‐Chao, Zhang, Xiao‐Long, Liu, Guo‐Qiang, Zhang, Yu‐Zhuo, Wu, Liang, Liu, Cheng‐Yuan, Pan, Yang, Su, Fu‐Hai, Gao, Min‐Rui, Li, Yi, Yu, Shu‐Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maximizing hole‐transfer kinetics—usually a rate‐determining step in semiconductor‐based artificial photosynthesis—is pivotal for simultaneously enabling high‐efficiency solar hydrogen production and hole utilization. However, this remains elusive yet as efforts are largely focused on optimizing the electron‐involved half‐reactions only by empirically employing sacrificial electron donors (SEDs) to consume the wasted holes. Using high‐quality ZnSe quantum wires as models, we show that how hole‐transfer processes in different SEDs affect their photocatalytic performances. We found that larger driving forces of SEDs monotonically enhance hole‐transfer rates and photocatalytic performances by almost three orders of magnitude, a result conforming well with the Auger‐assisted hole‐transfer model in quantum‐confined systems. Intriguingly, further loading Pt cocatalyts can yield either an Auger‐assisted model or a Marcus inverted region for electron transfer, depending on the competing hole‐transfer kinetics in SEDs. Taking small‐molecule sacrificial electron donors as models, we found that increasing the driving force monotonically enhances hole‐transfer kinetics of semiconductor quantum wires in an Auger‐assisted model, while it affects the electron transfer parabolically in a Marcus model. This suggests three design principles to maximize hole utilization to boost solar hydrogen production and photo‐oxidation of small molecules in quantum‐confined nanocrystals.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202305571