Loading…
Performance scaling with an applied magnetic field in indirect-drive inertial confinement fusion implosions
Magnetizing a cryogenic deuterium–tritium (DT)-layered inertial confinement fusion (ICF) implosion can improve performance by reducing thermal conduction and improving DT-alpha confinement in the hot spot. A room-temperature, magnetized indirect-drive ICF platform at the National Ignition Facility h...
Saved in:
Published in: | Physics of plasmas 2023-07, Vol.30 (7) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetizing a cryogenic deuterium–tritium (DT)-layered inertial confinement fusion (ICF) implosion can improve performance by reducing thermal conduction and improving DT-alpha confinement in the hot spot. A room-temperature, magnetized indirect-drive ICF platform at the National Ignition Facility has been developed, using a high-Z, high-resistivity AuTa4 alloy as the hohlraum wall material. Experiments show a 2.5× increase in deuterium–deuterium (DD) neutron yield and a 0.8-keV increase in hot-spot temperature with the application of a 12-T B-field. For an initial 26-T B-field, we observed a 2.9× yield increase and a 1.1-keV temperature increase, with the inferred burn-averaged B-field in the compressed hot spot estimated to be 7.1 ± 1.8 kT using measured primary DD-n and secondary DT-n neutron yields. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0150441 |