Loading…
Finite element method based on combination of "saddle point" variational formulations
A modified mixed/hybrid finite element method, which is no longer required to satisfy the Babuska-Brezzi condition, is referred to as a stabilized method Based on the duality of vanational principles in solid mechanics, a new type of stabilized method, called the combinatorially stabilized mixed/hyb...
Saved in:
Published in: | Science China. Technological sciences 1997-06, Vol.40 (3), p.285-300 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A modified mixed/hybrid finite element method, which is no longer required to satisfy the Babuska-Brezzi condition, is referred to as a stabilized method Based on the duality of vanational principles in solid mechanics, a new type of stabilized method, called the combinatorially stabilized mixed/hybrid finite element method, is presented by weight-averaging both the primal and the dual "saddle-point" schemes. Through a general analysis of stability and convergence under an abstract framework, it is shown that for the methods only an inf-sup inequality much weaker than Babuska-Brezzi condition needs to be satisfied. As a concrete application, it is concluded that the combinatorially stabilized Raviart and Thomas mixed methods permit the C -elements to replace the H(div; Ω)-elements. |
---|---|
ISSN: | 1674-7321 1006-9321 1869-1900 1862-281X |
DOI: | 10.1007/BF02916604 |