Loading…

The Microstructure of Zr/Nb Nanoscale Multilayer Coatings Irradiated with Helium Ions

The effect of helium ion irradiation on the microstructure and properties of composites based on Zr/Nb nanoscale multilayer coatings (NMCs) was studied. X-ray diffraction (XRD), transmission electron microscopy (TEM), and variable-energy Doppler broadening spectroscopy (DBS) were used for the in-dep...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2023-01, Vol.13 (1), p.193
Main Authors: Laptev, Roman, Stepanova, Ekaterina, Pushilina, Natalia, Kashkarov, Egor, Krotkevich, Dmitriy, Lomygin, Anton, Sidorin, Alexey, Orlov, Oleg, Uglov, Vladimir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of helium ion irradiation on the microstructure and properties of composites based on Zr/Nb nanoscale multilayer coatings (NMCs) was studied. X-ray diffraction (XRD), transmission electron microscopy (TEM), and variable-energy Doppler broadening spectroscopy (DBS) were used for the in-depth analysis of defects in the irradiated NMCs. After irradiation of the Zr/Nb NMCs with helium ions at a 1017 ion/cm2 dose, the layered structure was generally retained, but the internal stresses in the layers were increased, which caused wave-like distortion in the ion deposition zone. The Zr/Nb NMCs with an individual layer thickness of 25 nm were characterized by the smallest microstress changes, but single blisters were formed in the near-surface region. The microstructure of the Zr/Nb NMCs with a layer thickness of 100 nm exhibited relatively smaller changes upon helium ion irradiation. The prevailing positron-trapping center was the reduced-electron-density area at the interfaces before and after irradiation of the Zr/Nb NMCs regardless of the layer thickness. However, the layer thickness affected the DBS parameter profiles depending on the positron energy, which was probably due to the different localization of implanted ions within the layers or at the interfaces.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13010193