Loading…

Variations in July extreme precipitation in Henan Province and the related mechanisms

Extreme precipitation in July across Henan Province and the possible mechanisms involved were investigated. The precipitation in Henan reaches its maximum in July. During 1979–2021, the precipitation in July changed weakly, but the intensity (R99p) and frequency (R99f) of extreme precipitation showe...

Full description

Saved in:
Bibliographic Details
Published in:International journal of climatology 2022-12, Vol.42 (16), p.9115-9130
Main Authors: Qianrong, Ma, Rui, Hu, Yongping, Wu, Jie, Zhang, Rong, Zhi, Guoling, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extreme precipitation in July across Henan Province and the possible mechanisms involved were investigated. The precipitation in Henan reaches its maximum in July. During 1979–2021, the precipitation in July changed weakly, but the intensity (R99p) and frequency (R99f) of extreme precipitation showed certain increasing trends, with a significant increase in northern Henan. The proportion of extreme precipitation in total precipitation exhibited a significant upward trend. Wavelet analysis results showed that the extreme precipitation in Henan mainly has a 2–3‐year periodicity, and remarkable interannual variation. Furthermore, nearly 80% of the July extreme precipitation events within the magnitude of 50–100 mm occurred 2–3 times. The first two empirical orthogonal function modes of July R99p exhibited a quasi‐monopole pattern (EOF1) and meridional dipole pattern (EOF2), respectively. Further analysis revealed that EOF1 and EOF2 were related to the Silk Road teleconnection pattern (SRP) and the East Asia/Pacific teleconnection pattern (EAP). Circulation factors influenced the interannual variation of R99p, especially in recent years. Furthermore, the associated sea surface temperature anomalies over the Western Pacific and Indian Ocean can intensify the eastward extension of the South Asian high and westward strengthening of the western Pacific subtropical high, which further impacted the SRP and EAP pattern and enhanced the increment of extreme precipitation in Henan Province. (a) Locations of 119 stations and their local topography in Henan Province. The outer black line delineates the boundary of Henan Province, the black dots represent the stations (the red dots represent Kaifeng and Zhengzhou), and the shading indicates the elevation (m). (b) Annual cycle of precipitation over Henan Province.
ISSN:0899-8418
1097-0088
DOI:10.1002/joc.7805