Loading…

Efficient System Identification of a Two-Wheeled Robot (TWR) Using Feed-Forward Neural Networks

System identification of a Two-Wheeled Robot (TWR) through nonlinear dynamics is carried out in this paper using a data-driven approach. An Artificial Neural Network (ANN) is used as a kinematic estimator for predicting the TWR’s degree of movement in the directions of x and y and the angle of rotat...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-11, Vol.11 (21), p.3584
Main Authors: Khan, Muhammad Aseer, Baig, Dur-e-Zehra, Ali, Husan, Ashraf, Bilal, Khan, Shahbaz, Wadood, Abdul, Kamal, Tariq
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:System identification of a Two-Wheeled Robot (TWR) through nonlinear dynamics is carried out in this paper using a data-driven approach. An Artificial Neural Network (ANN) is used as a kinematic estimator for predicting the TWR’s degree of movement in the directions of x and y and the angle of rotation Ψ along the z-axis by giving a set of input vectors in terms of linear velocity ‘V’ (i.e., generated through the angular velocity ‘ω’ of a DC motor). The DC motor rotates the TWR’s wheels that have a wheel radius of ‘r’. Training datasets are achieved via simulating nonlinear kinematics of the TWR in a MATLAB Simulink environment by varying the linear scale sets of ‘V’ and ‘(r ± ∆r)’. Perturbation of the TWR’s wheel radius at ∆r = 10% is introduced to cater to the robustness of the TWR wheel kinematics. A trained ANN accurately modeled the kinematics of the TWR. The performance indicators are regression analysis and mean square value, whose achieved values met the targeted values of 1 and 0.01, respectively.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11213584