Loading…

Side-Input GaAs Laser Power Converters With Gradient AlGaAs Waveguide

Vertical p-n junction photovoltaic converters are the subject of this work. In these devices, light is injected into the semiconductor crystal through a side interface. So the current-carrying contacts are continuous. Therefore, the advantages of this design compared to the traditional (horizontal p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2022-10, Vol.43 (10), p.1717-1719
Main Authors: Khvostikov, Vladimir P., Panchak, Alexander N., Khvostikova, Olga A., Pokrovskiy, Pavel. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vertical p-n junction photovoltaic converters are the subject of this work. In these devices, light is injected into the semiconductor crystal through a side interface. So the current-carrying contacts are continuous. Therefore, the advantages of this design compared to the traditional (horizontal p-n junction) are as follows: simplified post-growth processing and ease of sequential assembly. GaAs photovoltaic converters are of particular interest for converting the light with the wavelength of 850 nm. However, a prototype with a design completely similar to the horizontal one is inoperable due to high surface recombination. Waveguide can be implemented to get around this limitation. So photovoltaic converters with a vertical p-n junction with a GaAs active region and a 50~ \mu \text{m} thick AlxGa1-xAs waveguide layer were grown by liquid-phase epitaxy. In the waveguide layer, laser radiation is refracted towards the active region without absorption. The refraction is provided by using a smooth linear change of x from 0.55 to 0.15. The grown samples were tested in practice under pulsed laser irradiation supplied by a 50~ \mu \text{m} optical fiber. With the use of an antireflection coating on the photodetector interface, a photoconversion efficiency of 53% was shown at an irradiation power of 92 mW (4.7 kW/cm2) and more than 50% at 190 mW (10 kW/cm2).
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2022.3202987