Loading…

STRENGTH PROPERTIES OF ABDOMINAL AORTIC VESSELS: EXPERIMENTAL RESULTS AND PERSPECTIVES

The aorta is the main vessel in the human circulatory system which plays a critical role in oxygen and nutrient supply to all abdominal organs and to the lower limbs. A critical pathology of this vessel is an aneurysm. An important problem in medical practice is to predict aortic aneurysm rupture an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mechanics and technical physics 2022-04, Vol.63 (2), p.251-258
Main Authors: Lipovka, A. I., Karpenko, A. A., Chupakhin, A. P., Parshin, D. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aorta is the main vessel in the human circulatory system which plays a critical role in oxygen and nutrient supply to all abdominal organs and to the lower limbs. A critical pathology of this vessel is an aneurysm. An important problem in medical practice is to predict aortic aneurysm rupture and plan surgery since aneurysm rupture outside a hospital, as a rule, leads to a lethal outcome. To develop adequate mathematical models that predict such an outcome, it is necessary to determine the strength characteristics of tissues of the aorta, aortic aneurysm, and iliac arteries at various stages of aneurysm growth based on individual patient data. The strength characteristics of the tissues of the human aorta, aortic aneurysm, and common iliac arteries have been studied. It has been experimentally proved that in healthy aorta tissue specimens, the differences between the ultimate relative strains in the axial and circumferential directions are statistically significant ( ), which is not observed in the case of the aortic aneurysm. The results can also be treated as remodeling of the aortic aneurysm wall compared to the healthy aorta. These data can be used to develop predictive models for aortic aneurysm rupture in personalized hydroelastic modeling.
ISSN:0021-8944
1573-8620
DOI:10.1134/S0021894422020080