Loading…
Simultaneous removal of chromium(VI) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper–activated persulfate
In this paper, metallic copper (Cu) was supported on nanoscale zero-valent iron (nZVI) to form a nanoscale bimetallic composite (nZVI-Cu), which was used to activate persulfate (PS) to simultaneously remove the compound contaminants Cr(VI) and tetracycline hydrochloride (TCH) in simulated wastewater...
Saved in:
Published in: | Environmental science and pollution research international 2020-11, Vol.27 (32), p.40826-40836 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, metallic copper (Cu) was supported on nanoscale zero-valent iron (nZVI) to form a nanoscale bimetallic composite (nZVI-Cu), which was used to activate persulfate (PS) to simultaneously remove the compound contaminants Cr(VI) and tetracycline hydrochloride (TCH) in simulated wastewater. nZVI, nZVI-Cu, and nZVI-Cu-activated PS (nZVI-Cu/PS) were characterized by SEM, TEM, XRD, and XPS. The effects of the bimetallic composite on Cr(VI) and TCH removal were compared in the nZVI, nZVI-activated PS (nZVI/PS), nZVI-Cu, and nZVI-Cu/PS systems. The results showed that nZVI and Cu can form a nanobimetallic system, which can create galvanic cells; thus, the galvanic corrosion of nZVI and the transfer of electrons are accelerated. For a single contaminant, the removal efficiency of Cr(VI) and TCH is the highest when nZVI is loaded with 3 wt% and 1 wt% Cu, respectively. The ratio of nZVI-Cu with 3 wt% Cu to PS is 7:1, and the removal efficiency of Cr(VI) and TCH compound contaminants is ~ 100% after 60 min under acidic conditions, which indicates that the Cr(VI) reduction and TCH oxidation were complete in the nZVI-Cu/PS system. The mechanisms of simultaneous removal of Cr(VI) and TCH in the nZVI-Cu/PS system are proposed. The removal of Cr is because of the adsorption-reduction effects of the nZVI-Cu bimetallic material. The degradation of TCH is mainly due to the action of oxidative free radicals generated by Fe
2+
-activated PS. The free radical capture experiments showed that SO- 4· plays a major role in the process of TCH degradation. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-020-10120-8 |