Loading…

A modular environmental and economic assessment applied to the production of Hermetia illucens larvae as a protein source for food and feed

Purpose The inclusion of insect protein into the food system has been proposed as a promising solution to ensure future food security and mitigate negative environmental impacts related to food production. However, the market volume for edible insects in Europe is still small; consequently, producer...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of life cycle assessment 2021-10, Vol.26 (10), p.1959-1976
Main Authors: Spykman, Raphaela, Hossaini, Sayed Mahdi, Peguero, Daniela A., Green, Ashley, Heinz, Volker, Smetana, Sergiy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The inclusion of insect protein into the food system has been proposed as a promising solution to ensure future food security and mitigate negative environmental impacts related to food production. However, the market volume for edible insects in Europe is still small; consequently, producers need a decision-support system to ensure the sustainable upscaling of the sector. The study analyzed environmental and economic impacts of insect production to identify the most eco-efficient production scenarios. Methods A novel modular eco-efficiency assessment approach was developed to analyze the production of dried Hermetia illucens larvae. An exemplary, industrial-scale insect production system was disaggregated into a total of 29 module variants that can be combined into 4608 distinct production scenarios, which are characterized by different feeds, energy efficiencies, and processing technologies. Environmental life cycle and cost assessments were carried out for each module variant, and eco-efficiency assessment was used to jointly assess these two sustainability dimensions. Additionally, the influence of the insect feed on the production system performance and impact was investigated by employing feed-specific scaling factors. These were used to aggregate module results into production scenario results. Results and discussion The most eco-efficient production scenarios include energy-efficient rearing facilities that rely on blanching and microwave drying for processing. The insect feed is the largest contributor to the environmental impacts and costs, but from an eco-efficiency standpoint, the choice of feed might not be crucial. Waste-type feeds (e.g., manure, fruit, and vegetable waste) have low environmental impacts and costs, but the production scenarios based on these feeds are less efficient. The low impacts of the feed are offset by higher impacts during the rearing and processing stages. Conversely, scenarios based on higher quality feeds (e.g., by-products like wheat middlings or distiller’s grains) require less resources, but the initial feed impacts and costs are higher. Moreover, of the feed types studied, only highly processed ones, such as compound chicken feed, should be avoided for insect rearing. Conclusions The developed modular assessment approach is efficient in assessing multiple potential insect production scenarios. It can be adapted to incorporate additional variations of the production system via additional modules. Limitati
ISSN:0948-3349
1614-7502
DOI:10.1007/s11367-021-01986-y