Loading…

Proposal to Reuse Rubber Waste from End-Of-Life Tires Using Thermosetting Resin

Due to the increasing production of motor vehicles, a large amount of waste with different characteristics and compositions is generated, notably end-of-life tires, which are harmful to the environment when not properly disposed. Their composition contains contaminating chemical elements, resulting...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2019-12, Vol.11 (24), p.6997
Main Authors: Buss, Andre Hekermann, Kovaleski, João Luiz, Pagani, Regina Negri, da Silva, Vander Luiz, Silva, Jaqueline de Matos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the increasing production of motor vehicles, a large amount of waste with different characteristics and compositions is generated, notably end-of-life tires, which are harmful to the environment when not properly disposed. Their composition contains contaminating chemical elements, resulting in negative impacts on the environment. This research aims to present a process that favors the recycling of rubber waste from end-of-life tires. For the construction of the state of the art and state of the technique, a review of the literature on end-of-life tire rubber, and a search on Google Patents and Espacenet was done using Methodi Ordinatio. For the experimental work, samples were made using concentrations of 20%, 40%, and 60% of end-of-life tire rubber particles, with the addition of thermoset polymeric matrix of isophthalic polyester resin, catalyst, and dyes. In order to evaluate the quality of the mixture, some tests with the material resulting from the mixture were performed: Izod impact strength, Shore D hardness, immersion density determination, flexural strength, and scanning electron microscopy analysis. The results from the tests indicate that the composition with 60% of rubber particles had better mechanical results than samples containing 20% and 40%. The tests also show that end-of-life tire particles promote chemical adsorption (interaction) with the thermoset polymer matrix, favoring the mechanical properties. The final results of this research are: the literature review and the search on granted patents showed that this study is original; the experimental work suggests that practical applications are possible, generating a new product, harder with a proportion of 60% of rubber particles, as indicated by the tests, with a smooth surface that does not require polishing. Thus, this research is characterized as innovative as well as having sustainable characteristics.
ISSN:2071-1050
2071-1050
DOI:10.3390/su11246997