Loading…
Green function study of quantum transport in ultra-small devices with embedded atomistic clusters
Transport in limiting scale MOSFET transistors will be strongly influenced by quantum effects and the presence of atomistic scattering centres either intentionally or un-intentionally present in the channel and the device environs. The scattering in such systems is non-asymptotic and the selfaveragi...
Saved in:
Published in: | Journal of physics. Conference series 2006-04, Vol.35 (1), p.233-246 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transport in limiting scale MOSFET transistors will be strongly influenced by quantum effects and the presence of atomistic scattering centres either intentionally or un-intentionally present in the channel and the device environs. The scattering in such systems is non-asymptotic and the selfaveraging conditions of the Kohn-Luttinger theorem fail so that a self-energy for impurity scattering does not exist. Atomistic scattering must therefore be treated non-perturbatively. Previously it has been shown that quantized micro-vortices may occur at definite energies in the current flow contributing to both the blocking effect and to effective mobility. The present study uses the Glasgow and NASA NEGF simulators to study vortex formation and tunnelling through small clusters of atomistic impurities arranged with various configurations within the 5 nm wide by 12 nm long channel of a Double Gate MOSFET. The I-V characteristics and the threshold voltage are severely affected by the distribution of the charges in the channel. A variety of different geometry atomistic clusters have been studied. Examination of the energy dependent current density allows an evaluation of the admixture of strong quantum flows such as micro-vortices to the net current. It is found that the threshold voltage and conductance are strongly dependent on the impurity configuration. The I-V characteristics are monotonic in most cases due to the strong thermal smoothing that prevents resolution of the mode structure. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/35/1/021 |