Loading…

Cu- and Zn-doped alkali activated mortar – Properties and durability in (bio)chemically aggressive wastewater environments

Metakaolin-based alkali activated mortars (AAM) - with and without CuSO4·5H2O and ZnO addition (mass ratio Mn+/solid binder 0.08% to 1.7%) - were casted and exposed within an extensive long-term field campaign over the period of 20 months to a sewer basin, strongly affected by biogenic acid corrosio...

Full description

Saved in:
Bibliographic Details
Published in:Cement and concrete research 2021-11, Vol.149, p.106541, Article 106541
Main Authors: Grengg, C., Koraimann, G., Ukrainczyk, N., Rudic, O., Luschnig, S., Gluth, G.J.G., Radtke, M., Dietzel, M., Mittermayr, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metakaolin-based alkali activated mortars (AAM) - with and without CuSO4·5H2O and ZnO addition (mass ratio Mn+/solid binder 0.08% to 1.7%) - were casted and exposed within an extensive long-term field campaign over the period of 20 months to a sewer basin, strongly affected by biogenic acid corrosion. (Un-)exposed AAM were tested regarding their physicochemical and microstructural properties, bioreceptivity and overall durability. Metal addition led to a retarding effect during alkali-activation reaction, as well as to an increase in open porosity of up to 3.0% and corresponding lower compressive strength of up to 10.9%. Reduced microbial colonization and diversity were observed on AAM with Cu, while Zn addition led to increased biodiversity. We propose that the observed higher durability of Cu-doped AAM is due to antibacterial effects and associated reduction of biogenic acid production, superseding overall negative effects of metal-dosage on physical material properties. Observed lower durability of Zn-doped AAM was related to combined negative physicochemical and microbial effects.
ISSN:0008-8846
1873-3948
DOI:10.1016/j.cemconres.2021.106541