Loading…

The life span and dynamics of immiscible viscous fingering in rectilinear displacements

We investigate the dynamics, interactions, and decay of immiscible viscous fingers in two and three dimensions over time in a high-aspect ratio (up to 100:1) system. The behavior is related to the viscosity ratio and a macroscopic capillary number. The same four fingering regimes are observed as in...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2021-09, Vol.33 (9)
Main Authors: Kampitsis, A. E., Kostorz, W. J., Muggeridge, A. H., Jackson, M. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the dynamics, interactions, and decay of immiscible viscous fingers in two and three dimensions over time in a high-aspect ratio (up to 100:1) system. The behavior is related to the viscosity ratio and a macroscopic capillary number. The same four fingering regimes are observed as in miscible displacements (spreading of the interface between wetting and non-wetting fluid but no fingers, the growth of many fingers that can be described by perturbation analysis, non-linear interactions between fingers and decay to a single finger) for low viscosity ratio and high capillary to viscous ratios. At higher viscosity ratios and lower capillary to viscous ratios, periodic tip-splitting and decay results in a fluctuation between one and two fingers at late time. This has not been seen in miscible displacements. We provide a stability plot that can be used to identify when this will occur. Similar behaviors were seen in both two and three dimensions, suggesting that learnings from two-dimensional (2D) linear displacements can be applied to similar three-dimensional (3D) flows. In particular, the square root of the number of fingers seen in the 3D simulations and their decay with time was almost identical to 2D.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0064955