Loading…

Modeling of Wastewater Treatment Processes in Membrane Bioreactors Compared to Conventional Activated Sludge Systems

Membrane techniques constitute an interesting alternative to conventional activated sludge systems (CAS). In membrane bioreactors (MBR), the biomass separated on membranes is retained independently of sludge sedimentation properties. As a consequence, a high biomass concentration as well as low food...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2019-05, Vol.7 (5), p.285
Main Authors: Bis, Marta, Montusiewicz, Agnieszka, Piotrowicz, Adam, Łagód, Grzegorz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane techniques constitute an interesting alternative to conventional activated sludge systems (CAS). In membrane bioreactors (MBR), the biomass separated on membranes is retained independently of sludge sedimentation properties. As a consequence, a high biomass concentration as well as low food to microorganisms ratio can be obtained. Moreover, the development of a characteristic activated sludge population is stimulated by the specific conditions prevailing in MBRs. In the study, the operation and treatment efficiency of the MBR and CAS processes were examined and compared. Simulation was performed with the use of GPS-X software. The effluent quality obtained for the MBR system was either better or comparable to that of CAS. The most significant difference concerned the elimination of total suspended solids, which amounted to 99.8% in the MBR. Regarding nutrients, a low concentration of total phosphorus in the effluent from CAS and MBR was obtained (0.67 gP m−3 and 0.50 gP m−3, respectively). Greater differences were achieved in the case of total nitrogen. Although almost complete nitrification took place in both systems, a lower concentration of nitrate in the effluent from MBR in comparison to CAS, i.e., 11.2 gN m−3 and 14.1 gN m−3, respectively, allowed us to obtain a higher removal of total nitrogen (80.8% and 76.1%, respectively).
ISSN:2227-9717
2227-9717
DOI:10.3390/pr7050285