Loading…

Disentangling natural vs. anthropogenic induced environmental variability during the Holocene: Marambaia Cove, SW sector of the Sepetiba Bay (SE Brazil)

Multiproxy approach based on textural, mineralogical, geochemical, and microfaunal analyses on a 176-cm-long core (SP8) has been applied to reconstruct the Holocene paleoenvironmental changes and disentangling natural vs. anthropogenic variability in Marambaia Cove of the Sepetiba Bay (SE Brazil). S...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2021-05, Vol.28 (18), p.22612-22640
Main Authors: Castelo, Wellen Fernanda Louzada, Martins, Maria Virgínia Alves, Martínez-Colón, Michael, Guerra, Josefa Varela, Dadalto, Tatiana Pinheiro, Terroso, Denise, Soares, Maryane Filgueiras, Frontalini, Fabrizio, Duleba, Wânia, Socorro, Orangel Antonio Aguilera, Geraldes, Mauro Cesar, Rocha, Fernando, Bergamaschi, Sergio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiproxy approach based on textural, mineralogical, geochemical, and microfaunal analyses on a 176-cm-long core (SP8) has been applied to reconstruct the Holocene paleoenvironmental changes and disentangling natural vs. anthropogenic variability in Marambaia Cove of the Sepetiba Bay (SE Brazil). Sepetiba Bay became a lagoonal system due to the evolution and development of the Marambaia barrier island during the Holocene and the presence of an extensive river basin. Elemental concentrations from pre-anthropogenic layers from the nearby SP7 core have been used to estimate the baseline elemental concentrations for this region and to determine metals enrichment factors (EF), pollution load index (PLI), and sediment pollution index (SPI). Record of the core SP8 provides compelling evidence of the lagoon evolution differentiating the effects of potentially toxic elements (PTEs) under natural vs. anthropic forcing in the last ~ 9.5 ka BP. The study area was probably part of coastal sand ridges between ≈ 9.5 and 7.8 ka BP (radiocarbon date). Events of wash over deposited allochthonous material and organic matter between ≈ 8.6 and 7.8 ka. Climatic event 8.2 ka BP, in which the South American Summer Monsoon was intensified in Brazil causing higher rainfall and moisture was scored by an anoxic event. Accumulation of organic matter resulted in oxygen depletion and even anoxia in the sediment activating biogeochemical processes that resulted in the retention of potentially toxic elements (PTEs). After ≈ 7.8 ka BP at the onset of the Holocene sea-level rise, a marine incursion flooded the Marambaia Cove area (previously exposed to subaerial conditions). Environmental conditions became favorable for the colonization of benthic foraminifera. The Foram Stress Index (FSI) and Exp(H’bc) indicate that the environmental conditions turned from bad to more favorable since ≈ 7.8 ka BP, with maximum health reached at ≈ 5 ka BP, during the mid-Holocene relative sea-level highstand. Since then, the sedimentological and ecological proxies suggest that the system evolved to an increasing degree of confinement. Since ≈ 1975 AD, a sharp increase of silting, Cd, Zn, and organic matter also induced by anthropic activities caused major changes in foraminiferal assemblages with a significant increase of Ammonia/ Elphidium Index (AEI), EF, and SPI values and decreasing of FSI and Exp(H’bc) (ecological indicators) demonstrating an evolution from “moderately polluted” to “heavily polluted” e
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-12179-9