Loading…

Supersymmetric ν-inflaton Dark Matter

Abstract We present the supersymmetric extension of the unified model for inflation and Dark Matter studied in ref. [1]. The scenario is based on the incomplete decay of the inflaton field into right-handed (s)neutrino pairs. By imposing a discrete interchange symmetry on the inflaton and the right-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cosmology and astroparticle physics 2021-04, Vol.2021 (4), p.37
Main Authors: Bastero-Gil, Mar, Torres Manso, António
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We present the supersymmetric extension of the unified model for inflation and Dark Matter studied in ref. [1]. The scenario is based on the incomplete decay of the inflaton field into right-handed (s)neutrino pairs. By imposing a discrete interchange symmetry on the inflaton and the right-handed (s)neutrinos, one can ensure the stability of the inflaton field at the global minimum today, while still allowing it to partially decay and reheat the Universe after inflation. Compatibility of inflationary predictions, BBN bounds and obtaining the right DM abundance for the inflaton Dark Matter candidate typically requires large values of its coupling to the neutrino sector, and we use supersymmetry to protect the inflaton from potentially dangerous large radiative corrections which may spoil the required flatness of its potential. In addition, the inflaton will decay now predominantly into sneutrinos during reheating, which in turn give rise both to the thermal bath made of Standard Model particles, and inflaton particles. We have performed a thorough analysis of the reheating process following the evolution of all the partners involved, identifying the different regimes in the parameter space for the final Dark Matter candidate. This as usual can be a WIMP-like inflaton particle or an oscillating condensate, but we find a novel regime for a FIMP-like candidate.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2021/04/037