Loading…

A Review on the Applicability of Life Cycle Assessment to Evaluate the Technical and Environmental Properties of Waste Electrical and Electronic Equipment

Acrylonitrile–butadiene–styrene (ABS) copolymer and high-impact polystyrene (HIPS) are the plastics most commonly found in waste electrical and electronic equipment (WEEE), although properties generally decline with recycling. Technical studies are important in assessing the properties of recycled p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymers and the environment 2021-05, Vol.29 (5), p.1333-1349
Main Authors: da Silva Müller Teixeira, Flávia, de Carvalho Peres, Augusto Cesar, Gomes, Thiago Santiago, Visconte, Leila Lea Y., Pacheco, Elen Beatriz Acordi Vasques
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acrylonitrile–butadiene–styrene (ABS) copolymer and high-impact polystyrene (HIPS) are the plastics most commonly found in waste electrical and electronic equipment (WEEE), although properties generally decline with recycling. Technical studies are important in assessing the properties of recycled plastics and obtaining better evidence of their return or not to the same production cycle, through a study of their impacts and life cycle assessment (LCA). This article aimed at a literature search for information that demonstrates the importance of considering the technical property results of LCA studies on WEEE plastics. LCA studies show that recycling WEEE plastics, when compared with virgin raw material, prevents 87% of ABS gas emissions, in addition to reducing energy consumption by up to 90% for ABS and HIPS. However, some technical properties of recycled WEEE polymer material, such as impact strength and ultimate elongation, decline when compared to virgin materials, which may hinder their reinsertion into the same production cycle. These properties can be enhanced by preparing compatible mixtures of ABS and HIPS, or by mixing them with virgin polymers. Recycled ABS (not mixed with another material) can return to the same production cycle when the goal is to preserve the modulus of elasticity. Studies that investigate properties using LCA are scarce. However, they are important in determining the viability of the material returning or not to the same production cycle, which would impact the process and produce different LCA results. Recycled ABS and HIPS polymers from WEEE can return to the same function even if some properties decline, since properties can be improved when the polymers are properly mixed or made compatible, thereby lowering costs and primarily minimizing the negative environmental impacts.
ISSN:1566-2543
1572-8919
DOI:10.1007/s10924-020-01966-7