Loading…

Stress-controlled zero-field spin splitting in silicon carbide

We report the influence of static mechanical deformation on the zero-field spin splitting of silicon vacancies in silicon carbide at room temperature. We use AlN/6H-SiC heterostructures deformed by growth conditions and monitor the stress distribution as a function of distance from the heterointerfa...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2021-02, Vol.118 (8)
Main Authors: Breev, I. D., Poshakinskiy, A. V., Yakovleva, V. V., Nagalyuk, S. S., Mokhov, E. N., Hübner, R., Astakhov, G. V., Baranov, P. G., Anisimov, A. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-19574620d1c4b24effc5c128eadab35fcd6083bbccbc7b90d3b291ab98d95cdb3
cites cdi_FETCH-LOGICAL-c393t-19574620d1c4b24effc5c128eadab35fcd6083bbccbc7b90d3b291ab98d95cdb3
container_end_page
container_issue 8
container_start_page
container_title Applied physics letters
container_volume 118
creator Breev, I. D.
Poshakinskiy, A. V.
Yakovleva, V. V.
Nagalyuk, S. S.
Mokhov, E. N.
Hübner, R.
Astakhov, G. V.
Baranov, P. G.
Anisimov, A. N.
description We report the influence of static mechanical deformation on the zero-field spin splitting of silicon vacancies in silicon carbide at room temperature. We use AlN/6H-SiC heterostructures deformed by growth conditions and monitor the stress distribution as a function of distance from the heterointerface with spatially resolved confocal Raman spectroscopy. The zero-field spin splitting of the V1/V3 and V2 centers in 6H-SiC, measured by optically detected magnetic resonance, reveals significant changes at the heterointerface compared to the bulk value. This approach allows unambiguous determination of the spin-deformation interaction constant, which is 0.75 GHz/strain for the V1/V3 centers and 0.5 GHz/strain for the V2 centers. Provided piezoelectricity of AlN, our results offer a strategy to realize fine tuning of spin transition energies in SiC by deformation.
doi_str_mv 10.1063/5.0040936
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493681586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493681586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-19574620d1c4b24effc5c128eadab35fcd6083bbccbc7b90d3b291ab98d95cdb3</originalsourceid><addsrcrecordid>eNp90EtLxDAQB_AgCq6rB79BwZNC1jyatrkIsviCBQ_qOeQpWWpTk6ygn94sXfQgeJlh4McM8wfgFKMFRg29ZAuEasRpswdmGLUtpBh3-2CGEKKw4QwfgqOU1mVkhNIZuHrK0aYEdRhyDH1vTfVlY4DO295UafRDKb3P2Q-v1XbwvS-20jIqb-wxOHCyT_Zk1-fg5fbmeXkPV493D8vrFdSU0wwxZ23dEGSwrhWprXOaaUw6K41UlDltGtRRpbRWulUcGaoIx1LxznCmjaJzcDbtHWN439iUxTps4lBOClKXbzvMuqao80npGFKK1okx-jcZPwVGYhuPYGIXT7EXk03aZ5l9GH7wR4i_UIzG_Yf_bv4GF-Vz0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493681586</pqid></control><display><type>article</type><title>Stress-controlled zero-field spin splitting in silicon carbide</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Breev, I. D. ; Poshakinskiy, A. V. ; Yakovleva, V. V. ; Nagalyuk, S. S. ; Mokhov, E. N. ; Hübner, R. ; Astakhov, G. V. ; Baranov, P. G. ; Anisimov, A. N.</creator><creatorcontrib>Breev, I. D. ; Poshakinskiy, A. V. ; Yakovleva, V. V. ; Nagalyuk, S. S. ; Mokhov, E. N. ; Hübner, R. ; Astakhov, G. V. ; Baranov, P. G. ; Anisimov, A. N.</creatorcontrib><description>We report the influence of static mechanical deformation on the zero-field spin splitting of silicon vacancies in silicon carbide at room temperature. We use AlN/6H-SiC heterostructures deformed by growth conditions and monitor the stress distribution as a function of distance from the heterointerface with spatially resolved confocal Raman spectroscopy. The zero-field spin splitting of the V1/V3 and V2 centers in 6H-SiC, measured by optically detected magnetic resonance, reveals significant changes at the heterointerface compared to the bulk value. This approach allows unambiguous determination of the spin-deformation interaction constant, which is 0.75 GHz/strain for the V1/V3 centers and 0.5 GHz/strain for the V2 centers. Provided piezoelectricity of AlN, our results offer a strategy to realize fine tuning of spin transition energies in SiC by deformation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0040936</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Deformation ; Heterostructures ; Magnetic resonance ; Piezoelectricity ; Raman spectroscopy ; Room temperature ; Silicon carbide ; Spin transition ; Splitting ; Strain ; Stress concentration ; Stress distribution</subject><ispartof>Applied physics letters, 2021-02, Vol.118 (8)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-19574620d1c4b24effc5c128eadab35fcd6083bbccbc7b90d3b291ab98d95cdb3</citedby><cites>FETCH-LOGICAL-c393t-19574620d1c4b24effc5c128eadab35fcd6083bbccbc7b90d3b291ab98d95cdb3</cites><orcidid>0000-0002-5200-6928 ; 0000-0001-9327-6468 ; 0000-0002-2318-8849 ; 0000-0003-1040-5362 ; 0000-0003-1807-3534 ; 0000-0003-2171-7943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0040936$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,786,788,790,801,27957,27958,76741</link.rule.ids></links><search><creatorcontrib>Breev, I. D.</creatorcontrib><creatorcontrib>Poshakinskiy, A. V.</creatorcontrib><creatorcontrib>Yakovleva, V. V.</creatorcontrib><creatorcontrib>Nagalyuk, S. S.</creatorcontrib><creatorcontrib>Mokhov, E. N.</creatorcontrib><creatorcontrib>Hübner, R.</creatorcontrib><creatorcontrib>Astakhov, G. V.</creatorcontrib><creatorcontrib>Baranov, P. G.</creatorcontrib><creatorcontrib>Anisimov, A. N.</creatorcontrib><title>Stress-controlled zero-field spin splitting in silicon carbide</title><title>Applied physics letters</title><description>We report the influence of static mechanical deformation on the zero-field spin splitting of silicon vacancies in silicon carbide at room temperature. We use AlN/6H-SiC heterostructures deformed by growth conditions and monitor the stress distribution as a function of distance from the heterointerface with spatially resolved confocal Raman spectroscopy. The zero-field spin splitting of the V1/V3 and V2 centers in 6H-SiC, measured by optically detected magnetic resonance, reveals significant changes at the heterointerface compared to the bulk value. This approach allows unambiguous determination of the spin-deformation interaction constant, which is 0.75 GHz/strain for the V1/V3 centers and 0.5 GHz/strain for the V2 centers. Provided piezoelectricity of AlN, our results offer a strategy to realize fine tuning of spin transition energies in SiC by deformation.</description><subject>Applied physics</subject><subject>Deformation</subject><subject>Heterostructures</subject><subject>Magnetic resonance</subject><subject>Piezoelectricity</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Silicon carbide</subject><subject>Spin transition</subject><subject>Splitting</subject><subject>Strain</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQB_AgCq6rB79BwZNC1jyatrkIsviCBQ_qOeQpWWpTk6ygn94sXfQgeJlh4McM8wfgFKMFRg29ZAuEasRpswdmGLUtpBh3-2CGEKKw4QwfgqOU1mVkhNIZuHrK0aYEdRhyDH1vTfVlY4DO295UafRDKb3P2Q-v1XbwvS-20jIqb-wxOHCyT_Zk1-fg5fbmeXkPV493D8vrFdSU0wwxZ23dEGSwrhWprXOaaUw6K41UlDltGtRRpbRWulUcGaoIx1LxznCmjaJzcDbtHWN439iUxTps4lBOClKXbzvMuqao80npGFKK1okx-jcZPwVGYhuPYGIXT7EXk03aZ5l9GH7wR4i_UIzG_Yf_bv4GF-Vz0w</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Breev, I. D.</creator><creator>Poshakinskiy, A. V.</creator><creator>Yakovleva, V. V.</creator><creator>Nagalyuk, S. S.</creator><creator>Mokhov, E. N.</creator><creator>Hübner, R.</creator><creator>Astakhov, G. V.</creator><creator>Baranov, P. G.</creator><creator>Anisimov, A. N.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5200-6928</orcidid><orcidid>https://orcid.org/0000-0001-9327-6468</orcidid><orcidid>https://orcid.org/0000-0002-2318-8849</orcidid><orcidid>https://orcid.org/0000-0003-1040-5362</orcidid><orcidid>https://orcid.org/0000-0003-1807-3534</orcidid><orcidid>https://orcid.org/0000-0003-2171-7943</orcidid></search><sort><creationdate>20210222</creationdate><title>Stress-controlled zero-field spin splitting in silicon carbide</title><author>Breev, I. D. ; Poshakinskiy, A. V. ; Yakovleva, V. V. ; Nagalyuk, S. S. ; Mokhov, E. N. ; Hübner, R. ; Astakhov, G. V. ; Baranov, P. G. ; Anisimov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-19574620d1c4b24effc5c128eadab35fcd6083bbccbc7b90d3b291ab98d95cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Deformation</topic><topic>Heterostructures</topic><topic>Magnetic resonance</topic><topic>Piezoelectricity</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Silicon carbide</topic><topic>Spin transition</topic><topic>Splitting</topic><topic>Strain</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breev, I. D.</creatorcontrib><creatorcontrib>Poshakinskiy, A. V.</creatorcontrib><creatorcontrib>Yakovleva, V. V.</creatorcontrib><creatorcontrib>Nagalyuk, S. S.</creatorcontrib><creatorcontrib>Mokhov, E. N.</creatorcontrib><creatorcontrib>Hübner, R.</creatorcontrib><creatorcontrib>Astakhov, G. V.</creatorcontrib><creatorcontrib>Baranov, P. G.</creatorcontrib><creatorcontrib>Anisimov, A. N.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breev, I. D.</au><au>Poshakinskiy, A. V.</au><au>Yakovleva, V. V.</au><au>Nagalyuk, S. S.</au><au>Mokhov, E. N.</au><au>Hübner, R.</au><au>Astakhov, G. V.</au><au>Baranov, P. G.</au><au>Anisimov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress-controlled zero-field spin splitting in silicon carbide</atitle><jtitle>Applied physics letters</jtitle><date>2021-02-22</date><risdate>2021</risdate><volume>118</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report the influence of static mechanical deformation on the zero-field spin splitting of silicon vacancies in silicon carbide at room temperature. We use AlN/6H-SiC heterostructures deformed by growth conditions and monitor the stress distribution as a function of distance from the heterointerface with spatially resolved confocal Raman spectroscopy. The zero-field spin splitting of the V1/V3 and V2 centers in 6H-SiC, measured by optically detected magnetic resonance, reveals significant changes at the heterointerface compared to the bulk value. This approach allows unambiguous determination of the spin-deformation interaction constant, which is 0.75 GHz/strain for the V1/V3 centers and 0.5 GHz/strain for the V2 centers. Provided piezoelectricity of AlN, our results offer a strategy to realize fine tuning of spin transition energies in SiC by deformation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0040936</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5200-6928</orcidid><orcidid>https://orcid.org/0000-0001-9327-6468</orcidid><orcidid>https://orcid.org/0000-0002-2318-8849</orcidid><orcidid>https://orcid.org/0000-0003-1040-5362</orcidid><orcidid>https://orcid.org/0000-0003-1807-3534</orcidid><orcidid>https://orcid.org/0000-0003-2171-7943</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-02, Vol.118 (8)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2493681586
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Deformation
Heterostructures
Magnetic resonance
Piezoelectricity
Raman spectroscopy
Room temperature
Silicon carbide
Spin transition
Splitting
Strain
Stress concentration
Stress distribution
title Stress-controlled zero-field spin splitting in silicon carbide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T23%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress-controlled%20zero-field%20spin%20splitting%20in%20silicon%20carbide&rft.jtitle=Applied%20physics%20letters&rft.au=Breev,%20I.%20D.&rft.date=2021-02-22&rft.volume=118&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0040936&rft_dat=%3Cproquest_cross%3E2493681586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-19574620d1c4b24effc5c128eadab35fcd6083bbccbc7b90d3b291ab98d95cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493681586&rft_id=info:pmid/&rfr_iscdi=true