Loading…

Novel Porphyrin Zr Metal–Organic Framework (PCN-224)-Based Ultrastable Electrochemiluminescence System for PEDV Sensing

The sensitive detection of coronavirus is of vital importance for the prevention of its rapid spread. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets. In this work, a novel PCN-224-based electrochemiluminescence (ECL...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2021-02, Vol.93 (4), p.2090-2096
Main Authors: Ma, Jing, Wang, Wenjing, Li, Yun, Lu, Zhicheng, Tan, Xuecai, Han, Heyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sensitive detection of coronavirus is of vital importance for the prevention of its rapid spread. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets. In this work, a novel PCN-224-based electrochemiluminescence (ECL) system was constructed for PEDV detection with high sensitivity. We found that PCN-224 can be employed as an ECL reporter with a strong signal because of its zirconium-based organic porous frame nanomaterial with a large specific surface area and stable structure. TiO2 nanoparticles were used as an accelerator for the first time to promote the reduction of coreactant potassium peroxydisulfate on the cathode; thus, the initial ECL signal of PCN-224 was significantly amplified. In the presence of PEDV, the ECL signal decreased due to the block effect to electron transfer. As a result, the novel “signal off” biosensor achieved a sensitive detection of PEDV ranging from 1 pg/mL to 10 ng/mL, with a detection limit of 0.4 pg/mL (S/N = 3). Importantly, the PCN-224 nanomaterial enriched the ECL system in biological analysis, and the proposed strategy provided a new route for coronavirus detection.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c03836