Loading…

Mechanical and Acoustic Properties of Alkali-Treated Sansevieria ehrenbergii/Camellia sinensis Fiber–Reinforced Hybrid Epoxy Composites: Incorporation of Glass Fiber Hybridization

The intention behind this research work was to analyse the mechanical as well as acoustic behaviour of Sansevieria ehrenbergii (snake grass) / Camellia sinensis (waste tealeaf) fibers with glass fiber (GF) – reinforcement to form the hybrid epoxy composites. Fibers of S.ehrenbergii / C.sinensis were...

Full description

Saved in:
Bibliographic Details
Published in:Applied composite materials 2020-12, Vol.27 (6), p.915-933
Main Authors: Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Sanjay, M. R., Siengchin, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intention behind this research work was to analyse the mechanical as well as acoustic behaviour of Sansevieria ehrenbergii (snake grass) / Camellia sinensis (waste tealeaf) fibers with glass fiber (GF) – reinforcement to form the hybrid epoxy composites. Fibers of S.ehrenbergii / C.sinensis were chemically modified for their effective usage as reinforcement in hybrid composites. Five combinations of hybrid composites were fabricated using hand-operated compression molding techniques by changing the percentage weight of snake grass fiber (SGF) and waste tea leaf fiber (WTLF). The results indicated that the mechanical behaviour of SGF/WTLF composites have been substantially enhanced by hybridization with GF. Enhanced mechanical behavior of hybrid composites is observed as an incremental percentage of SGF composition. The experimental findings show that the weight fraction of 25 wt.% WTLF reinforced with SGF shows a strong acoustic absorption coefficient (AAC) of 0.59 in the frequency range of 2000–6300 Hz as well introduces the potential for acoustic sound proofing applications, such as loudspeaker design, perforated panels, sound recording, and reproduction room. The morphological behavior of hybrid composites, such as fiber pullout, matrix crack, void formation, and interfacial bond between the binder and fibers were observed using a scanning electron microscope.
ISSN:0929-189X
1573-4897
DOI:10.1007/s10443-020-09840-4