Loading…

Design and Analysis of RBFN-Based Single MPPT Controller for Hybrid Solar and Wind Energy System

In this paper, a radial basis function network-based single maximum power point tracking (MPPT) control algorithm for a hybrid solar and wind energy system is designed and analyzed for standalone and grid connected applications. The extraction of maximum power from the intermittent and erratic natur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2017, Vol.5, p.15308-15317
Main Authors: Kumar, K., Babu, N. Ramesh, Prabhu, K. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a radial basis function network-based single maximum power point tracking (MPPT) control algorithm for a hybrid solar and wind energy system is designed and analyzed for standalone and grid connected applications. The extraction of maximum power from the intermittent and erratic nature renewable energy sources is the main target in the hybrid renewable energy system. In the literature, many researchers developed an individual MPPT control algorithm for solar and wind energy system, which in turn increases the number of control algorithms in a hybrid system. In this paper, a single MPPT controller is proposed to extract maximum power from both the sources simultaneously. The performance of the proposed MPPT control algorithm is analyzed in both standalone and grid connected modes, under different weather conditions. The hybrid renewable energy system is designed by considering 560-W photovoltaic system and 500-W wind system with the conventional boost converter, and it is simulated in MATLAB/Simulink environment to analyze the performance of the proposed MPPT controller.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2733555