Non-rainfall Moisture: A Key Driver of Microbial Respiration from Standing Litter in Arid, Semiarid, and Mesic Grasslands

Models assume that rainfall is the major moisture source driving decomposition. Non-rainfall moisture (NRM: high humidity, dew, and fog) can also induce standing litter decomposition, but there have been few measurements of NRM-mediated decomposition across sites and no efforts to extrapolate the co...

Full description

Saved in:
Bibliographic Details
Published in:Ecosystems (New York) 2020-09, Vol.23 (6), p.1154-1169
Main Authors: Evans, Sarah, Todd-Brown, Katherine E. O., Jacobson, Kathryn, Jacobson, Peter
Format: Article
Language:eng
Subjects:
Dew
Fog
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Models assume that rainfall is the major moisture source driving decomposition. Non-rainfall moisture (NRM: high humidity, dew, and fog) can also induce standing litter decomposition, but there have been few measurements of NRM-mediated decomposition across sites and no efforts to extrapolate the contribution of NRM to larger scales to assess whether this mechanism can improve model predictions. Here, we show that NRM is an important, year-round source of moisture in grassland sites with contrasting moisture regimes using field measurements and modeling. We first characterized NRM frequency and measured NRM-mediated decomposition at two sites in the Namib Desert, Namibia (hyper-arid desert), and at one site in Iowa, USA (tallgrass prairie). NRM was frequent at all sites (85–99% of hours that litter was likely to be wet were attributed to NRM) and tended to occur in cool, high-humidity periods for several hours or more at a time. NRM also resulted in CO₂ release from microbes in standing litter at all sites when litter became sufficiently wet (> 5% gravimetric moisture for fine litter and > 13% for coarse), and significantly contributed to mass loss, particularly in the western Namib site that received almost no rain. When we modeled annual mass loss induced by NRM and rain and extrapolated our characterization of NRM decomposition to a final semiarid site (Sevilleta, New Mexico), we found that models driven by rainfall alone underestimated mass loss, while including NRM resulted in estimates within the range of observed mass loss. Together these findings suggest that NRM is an important missing component in quantitative and conceptual models of litter decomposition, but there is nuance involved in modeling NRM at larger scales. Specifically, temperature and physical features of the substrate emerge as factors that affect the microbial response to litter wetting under NRM in our sites, and require further study. Hourly humidity can provide an adequate proxy of NRM frequency, but site-specific calibration with litter wetness is needed to accurately attribute decomposition to periods when NRM wets litter. Greater recognition of NRM-driven decomposition and its interaction with other processes like photodegradation is needed, especially since fog, dew, and humidity are likely to shift under future climates.
ISSN:1432-9840
1435-0629